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Abstract—The contact problem of an isotropic square plate indented by a rigid spherical indentor
was studied. Employing an exact solution method with a simple discretization technique, the
numerical sensitivity due to the ill-posed nature of the problem was precluded by enhancing the
numerical procedure with a least square technique. For small indentations, the results were compared
with the published solutions for a circular plate and good agreement was obtained. Depending upon
the size of contact, the contact area was found to be either a circle or a hypotrocoid of four lobes
featuring a shorter length of contact along the through-the-corner directions of the plate. The
range of applicability of Hertz’s theory was found to be limited to very small indentations. The
distributions of the contact stresses over the plane of the plate were presented to illustrate the
difference of contact behavior between a square plate and a circular plate. The load-indentor
displacement relation was presented which showed that a square plate was stiffer than a circular
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plate under indentation.
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stress components
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U (=123) displacement functions
side length of the plate
semi-contact length
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a;(j=1.2,...,6)
C

Zi=12....6)
B, (x=a,b,...,e)

radius of curvature of the indentor
Poisson’s ratio

Lamé’s constants
unknown contact stress
number of divisions on ¢
A+2u

A+u

hypotrocoidal parameters
l/rl

uniform sub-load
sub-area for f,

Fourier coefficients for f;,
nn/L

mn/L

VPi+g

coefficients for U;
(A+3)/(A+p)

defined in eqns (21), (22)
defined in eqns (23), (24)

9or 96 defined in eqns (23)

- cosh (rh/2)
A sinh (rh/2)
Hy S + / C+
H C+/ S,
K, Kc k, k, defined in eqns (26)
Uy, U, on the top surface
k. ky defined in eqns (27)
(#3)0 us at (L2, L[2)
(u3), uy at (x,, y;)
(u3)om (u3)o due to f},
W3)yne (us); due to f,
Py, magnitude of f},
P total contact load
0, intimated average contact stress, P/(c x ¢)
x (x—L/2)/c
y (»r—Lj2)/c
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VE+57)
indentor displacement
bending rigidity.

ST

INTRODUCTION

The objective of this study was to solve a three-dimensional contact problem between an
isotropic square plate and a rigid spherical indentor within the framework of linear elasticity.
Various areas of contact, similar to those employed in the published literature, were
considered. Emphasis was placed on demonstrating that the asymmetric finite boundary
conditions strongly influence the local contact behavior. In all cases, the primary task in
the solution procedure was the determination of the correct contact area in order that the
correct contact stresses could be found.

Numerous conformal and counter-formal contact problems simulating wheel/rail con-
tact (Kalker, 1979, 1980a) have been studied. Many numerical algorithms have been
developed to determine the correct contact area for various contact geometries. For
example, Singh and Paul (1974) posed the problem with a prescribed interpenetration.
The numerical sensitivities which arose in their solution were overcome by using RFP
(Redundant Field Points) and FR (Functional Regularization) methods. Paul and Hashemi
(1979, 1980a) presented an improved numerical method to preclude the occurrence of
numerical sensitivity by posing the problem with a known applied load. A technique
involving flexibility of analysis was employed by Hartnett (1980) to treat counter-formal
contact problems. It was extended by Ahmadi et al. (1983) to solve non-Hertzian normal
(1980b, 1981, 1983), Duffek (1983) and Duffek and Jaschinski (1981). However, most
of the aforementioned approaches were based on using Boussinesq force-displacement
relations.

Recently, contact problems involving beams and plates have been increasingly studied.
For example, beam problems were solved by Keer and Miller (1983b), Sankar and Sun
(1983), Keer and Ballarini (1983) and Sun and Sankar (1985). The case of a cantilever
beam was studied by Keer and Schonberg (1986). In these studies, the ratio of contact
width to beam thickness, c/h, was treated as a known value, i.e. the problem was posed in
a manner different from that employed by Paul and Hashemi (1979, 1980b), Hartnett (1980)
and Ahmadi et al. (1983). A circular plate indented by a rigid spherical indentor was studied
by Keer and Miller (1983a) by considering a similar ratio (¢ = radius of the contact area).
The corresponding impact problem was studied by Schonberg et al. (1987). This was further
extended to the transversely isotropic case by Schonberg et al. (1987). All of these studies
revealed non-Hertzian type behavior for large indentations. In contrast to the case of
wheel/rail contact, these studies did not lack the knowledge of the shape of the contact area
due to planar or axisymmetric considerations. However, in order to satisfy the boundary
support conditions, their approach required more algebraic and numerical effort than
simply applying the Boussinesq force—displacement relation mentioned earlier.

This study employed the same way of posing the problem as that used by Keer and
Miller (1983a) but did not employ the axial symmetry in order to consider a square plate.
Friction between the plate and the indentor was neglected. The intention was to investigate
the local contact behavior for the case of asymmetric finite boundaries and for the case of
large contact areas. The approach extended the simple discretization method presented by
Sankar and Sun (1983) to three dimensions. Thus, a candidate contact area was proposed
for a prescribed contact length in an in-plane direction. It was discretized along both in-
plane directions in order to define various uniform sub-loads over each sub-area in the
contact region for the purpose of approximating the unknown contact stress. The dis-
placement fields due to the sub-loads were solved by modifying Pagano’s (1970) method
for obtaining exact solutions for rectangular plates, rather than superposing a plate theory
and an elasticity solution as employed by Keer and Miller (1983a). The form obtained for
the displacement was neater than that obtained by applying Pagano’s approach (1970)
directly. Meanwhile, Chen’s (1991) method of detecting terms was utilized in a three-
dimensional manner to carry out an efficient series calculation and to save CPU time. Next,
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the point matching technique of Sankar and Sun (1983), strengthened by the Redundant
Field Point method of Singh and Paul (1974), was used to solve for the magnitudes of
various sub-loads and to preclude the possibility of numerical sensitivity. The candidate
approximate solution obtained for the unknown contact stress was then checked to see if
the stresses were all compressive, a requirement due to the smooth indentation of the
problem. Improved candidate contact areas were proposed until this condition was fulfilled.
Emphasis was placed upon locating the correct contact area and the associated contact
stresses for various lengths of contact in the plane of the plate. The shape of the contact
area, although unknown, is of major concern; however, in general it can be reasonably
expected to be a circle for relatively small indentations. The limits of validity of both the
circular contact area and the Hertzian type solution were studied. The directional-depen-
dence of the contact stress distribution was presented to illustrate the distinction of the
present results from those for the circular plate (Keer and Miller, 1983a). The load—indentor
displacement relation was studied as well and compared with the circular plate case. The
present study excluded any consideration of material anisotropy. Knowledge of the effect
of the boundary support conditions upon both the contact surface and the structural
behavior are of such fundamental and practical importance that they should be studied
prior to considering material anisotropy. The present study thus served as a fundamental
study of the three-dimensional contact or impact problem incorporating both material
isotropy and boundary condition of plates with finite dimensions.

PROBLEM FORMULATION

An isotropic square plate is considered, as shown in Fig. 1. It is simply supported on
all edges in such a manner that only normal displacement but no tangential displacement
is allowed along each edge. The plate is indented by a rigid sphere at the center of the top
surface without considering the friction between them. Both the domain of the contact
region, Q(x, y), and the contact stresses, f(x, y), under the indentor are to be determined.
The contact length along the x-axis, c, is assumed to be a known value. The boundary
conditions in the through-the-thickness direction are

—h .
asa(x,y, —2—) = —f(x,y), for (x,») in Q(x,y), 1
—h
o3| X, y,T = (, elsewhere, 2
Spherical
indentor R

Y Isotropic
Z square
Y plate

Fig. 1. Isotropic square plate indented by a rigid spherical indentor.
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where & and L are the thickness and the edge length of the plate respectively, and R is the
radius of curvature of the indentor. Furthermore, the simply-supported edge conditions
require

o =u,=u;=0, for x=0,L, (6)

Oy = U, =u3=0, for y=0,L (7)

METHOD OF SOLUTION

Composition/discretization of candidate contact area

Extending Sankar and Sun’s approach (1983) to solve the present problem, a candidate
contact area will be proposed for a prescribed magnitude of half contact length, ¢, along
the x-axis. This area is discretized along both the x and y directions using the non-uniform
discretization scheme (Chen, 1991) to obtain a finer cut close to the contact boundary. By
symmetry, only a quarter contact region is displayed as shown in Fig. 2 and a loading factor
of 4 is imbedded. In this manner, the candidate contact area is approximated by a polygonal
region composed of various sub-areas which can be labelled as follows

Ay =4 = x) Vi1 —y1), k+1# K+1, 6]
A= Ayx- |)+2(x2”‘xl)()’l<+l_yl<), Ay = A1y 22—y )Xk 1 —x6), (9)
Aigri—n = Ak(K—k)+2(xk+xk+] =2X)(Yks2-k—Vks1-0); k=2,3,...,K—1, (10)

where k=1,2,...,K;I=1,2,...,K—k+1 and K is the number of divisions made on c.
Thus, the sub-area is either a rectangle if k+/ = K+1 or a trapezoid if k+/ = K+ 1.

s
Y4 >
Y3
Y2
Y3
Xl XZ X3 X4 XS

Fig. 2. Discretization of a proposed contact area.
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Response due to a typical sub-load

Consider a typical sub-load, f;,, uniformly distributed over the corresponding sub-area
Ay, Based on Pagano’s approach (1970), the boundary conditions (6) and (7) are satisfied
by taking the load, f,, and the displacement components %, (i = 1,2, 3) in the form

ee]

fu=3 3 Tosin(px)sin (@), (11

n=1m=1

u, = Ui(z)cos (px)sin(qy), u, = U,(2)sin(px) cos (gy),
uy = Us(z) sin (px) sin (gy), (12)

where U; (j = 1,2,3) are functions of z only, the T,,s are the Fourier coefficients, and
p=nn/L and ¢ = mn/L. The T,,s for the various sub-loads are defined in the Appendix
while the expressions for U, (j = 1, 2, 3) were given by Pagano (1970) in terms of exponential
functions. These expressions are modified here using the hyperbolic functions, i.e.

U, = (a;+ayz+asz’)Cy+ (az+auz +agz’)Sy, (13)

where i=1,2,3 and a;; (j=1,2,...,6) are unknown constants to be determined. In
addition, C, = cosh(rz), S, = sinh (rz) and r = \/p*+4*. Of the 18 constants, a;;, only six
are independent. Various relations among the a;s can be deduced to be (Chen, 1991)

, q . a rjia
as; = Q¢; = 0(=123), A2+0)2 =;a(2+i)l (i=12), [azz:l =1;[aj::|’ (14)

a3 _1 a az; __Ci as,
l:aza] - ’{p[011]+q[a12]} p [041]’ (1)

where C, = (A4 3u)/(A+ u), and 4 and u are the Lamé constants. In comparison to Pagano’s
approach (1970), as; = a¢; = 0(j = 1, 2, 3) are identically obtained. However, the remaining
relations are different from those of Pagano’s derivations (1970). Here, the independent
constants are taken to be a; (i,j = 1,2), a3, a,,. The expressions for U;s can now be
rewritten as

U, =(ay+za3)Ch+ (a2 +2a41)S,, U, = <a|2+zgasl)ch+(022'*'25041)5/., (16)

a,, +qa C.a;,—zra a,; +qa C,a4,—
U, = I:P 2074942 31 “]C;,+[P 1 rq 12 41 Zm“]S;,, an

r P
and the out-of-plane stress components a;; (j = 1,2, 3) are found to have the form

¢33 = {2ulp(a; Cy+a25,) +q(a,,C, + a2,5:))+ Z a5, + Z,a,, } sin (px) sin (gy), (18)

03 = ﬂ{l—? (a@,18x+a2 C,)+ By(a28, +a,,Ch) +Zsas, +Z4a.“} sin (px)cos(qy), (19)

¥4
03 = #{Tq (@128y+a2,C) + By(ay Sy +a C)+ Zsay, +Zaa41}005 (px)cos(gy), (20)

where
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Zl = gaZCh+BaSh’ ZZ = gaZSh+BaCh’ Z3 = gbzsh+BcCh’ (21)
Z4 = g,,zCh +BCS},, 25 = 2rZS;,+BeCh, ZG = 2r2Ch+BeSh, (22)
2ur? 2rq r q°
a = s =, Ba = (A+2u) - ey = ’
9a="p > B=7, A+ u)pB By =--+r (23)
2
Bc=§Be, Bd=€’r—+r, B,=1-C,. (24)

For a typical T,,, via the boundary conditions in the thickness direction (1) to (4), the six
unknown constants can be solved to be

q . —2r —2r
127 pan(l ,2), a4 K. ap, as K, as,,
a - Tnm Tnm 25
11 4,C, » Qg 4k, S, s (25)
where
Ky =B, +rhH,, K. = B.rhHe, k, = }—Z k., k= er ke, (26)
1 1
kc = r[#_ w(#thT+CaBe):|a kd = r|:#_ _(MthC+CaBe) . (27)
KC KT
In addition,
S, C, .
H;= i H. = 5. C, =cosh(rh/2), S, =sinh(rh/2) and C, = A+2u.
+ +
Finally, U, on the top surface, referred to as Us,, can be expressed as
Tnm HT HC )
Uy = 1+C, (—+_, 28
=g ) k.Kc ' k.Kr (28)
and the transverse displacement u; at (x, y) due to a typical sub-load f, will be
(W) =Y. Y. Us(n,m)sin(px)sin(gy). (29)

n=1 m=1

The indentation problem

Having solved for the transverse displacement field on the top surface of the plate due
to a typical sub-load f;,, the Point Matching Technique of Sankar and Sun (1983) is
employed in a three-dimensional manner to solve for the Ps, the magnitudes of f,;s. For
a point (x;, y;) inside the contact area, Q(x, y), the contact relation (5) requires that

-Y+(-4)

(u3)o—(u3)y; = 2R s (30)

where (¢3)o = us at x = y = L/2, (u3); = u3 at (x;,¥;), and
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K K—-k+1 K K—k+1
(u3)o ~ Z Z Ws)op Py (u3)y =~ Z z (uS)ij.klPkl’ (31
k=1 I=1 k=1 =1

for the case of K divisions made along c. In the above, (¥3) 9 is (13), due to fi; and (u3); .

is (#3);; due to fi;. Consequently,
LY LY
(+=3)+(~3)

K K—k+1
kgl 1;1 [(u3)op— (uJ)ij,kI]Pkl = 2R . (32)

By taking as many reference points (x;, y;) as the total number of the sub-loads, K(K+ 1)/2,
a set of simultaneous equations similar to (32) can be constructed to solve for the P,s. In
using this method, however, numerical sensitivity was experienced. To cure the numerical
sensitivity, the RFP method of Singh and Paul (1974) was employed. The number of
reference points in both the x and y directions was doubled.

NUMERICAL RESULTS AND DISCUSSION

For demonstration and comparison purposes, the solution is implemented for a plate
with L/h = 20 corresponding to the case of a/h = 10 (a = radius) for the circular plate
studied by Keer and Miller (1983a). The magnitudes of the ratio ¢/h considered by Keer
and Miller (1983a) will be adopted here, i.e. ¢/h = 0.5, 1.0, 2.0, 4.0. The contact stresses to
be presented are normalized by an intimated average contact stress, g, = p/(c % ¢), where
P is the total contact load. However, locations in the contact area will be normalized by
the semi-contact length c.

For ¢ = 0.5h, the contact area is proposed to be a circle with various numbers for K.
The contact stresses are found to be all compressive and thus the proposed circular shape
for the contact area is correct for such a small indentation. The convergence of the total
contact force with respect to K is found to be excellent even for a small number for X,
which may be less than 10, as shown in Fig. 3. For K = 8,9, 10, for example, the total
contact force is essentially constant. For K = 10, the distribution of contact stresses in the
y direction for various x locations is shown in Fig. 4. Apparently, the result for this case is
close to the Hertzian type behavior and is nearly ellipsoidal in shape. In particular, the
curve along ¥ = 0.0, i.e. the radial direction, is identical to the circular plate result obtained
by Keer and Miller (1983a). Thus, the size of the contact in this case is sufficiently small so
that the local contact behavior is not affected by the finite boundary of the plate, regardless
of its shape. For ¢ = 1.0h, a circle is proven to be the true contact shape since the contact

300 ’—

290 /

280 |-

270 -

Total contact load (1b)

260 —

250 I | ]

Fig. 3. Total contact load vs K.
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Fig. 4. Contact stress for ¢ = 0.5h (contact area: circle).

stresses are all compressive. As shown in Fig. 5, however, the distribution of contact stresses
deviates from the Hertzian type solution but not very appreciably.

For ¢ = 2.0h, a three-dimensional contact stress distribution is displayed in Fig. 6 by
proposing a circular contact area. A steep jump in the compressive stress arises near the
end of the contact lengths in both the x and y directions. However, a small tension is
observed in the neighborhood of the contact boundary around the 45° direction. This
incorrect candidate solution implies that the contact length along the 45° direction should
be reduced or the contact lengths in the x and y directions should be increased comparatively.

* *
cc 033/P

Fig. 5. Contact stress for ¢ = 1.0k (contact area: circle).

1.0

Fig. 6. Contact stress for ¢ = 2.0h (proposed contact area: circle).
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y

Fig. 7. Typical hypotrocoid of four lobes.

A curve which is not a circular arc but features with such characteristics is a hypotrocoid
of four lobes as shown in Fig. 7. It is expressible in terms of the following equations
(Holmes, 1978)

x = 3r,sin (f) —t sin (36), y = 3r,cos (6)+1 cos (36), 33)

where r, and ¢, both positive with 0 < ¢ < r,, are the parameters controlling the appearance
of the hypotrocoidal curves. For the second attempt, a hypotrocoid curve with
C; = t/r, = 0.01 is considered and is found to produce all compressive contact stresses as
illustrated in Fig. 8 for various radial directions with respect to the x-axis. In Fig. 8, 7 =

/X2+72, where X = (x—L/2)/c and y = (y— L/2)/c. Due to isotropy and symmetry, only
the directions ranging from 0° to 45° passing through the corners of the plate are included.
Apparently, the directional-dependence of the contact stress is marginal. The contact stress
distribution in this case deviates significantly from the Hertzian type solution. However,
both the peaking of the contact stresses near the contact boundary and the slight wrapping
of the plate around the indentor in the central region are similar to those observed by Keer
and Miller (1983a).

For a large indentation with ¢ = 4.04, a gradual transition to the correct contact area
is demonstrated in Figs 9~12 by proposing C, = 0 (circle), 0.02, 0.04, 0.06 respectively. The
greater the parameter, C,, i.e. the further away from a circle, the smaller the magnitude of
the tensile stress. Finally, by taking C, = 0.075, the tension is eliminated. As shown in Fig.
13, the contact stress in this case is extremely non-Hertzian. Wrapping of the plate around
the indentor in the center and peaking of the contact stress near the contact boundary are
similarly observed and are more severe than in the previous case. In comparison to the case
of the circular plate, the size of the region free of contact stress is different. For the square

1.0 —

*
C'C 0,,/P

*

0 0.2 0.4 0.6 0.8 1.0

T
Fig. 8. Contact stress for ¢ = 2.0 (hypotrocoid, C, = 0.01).
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Fig. 9. Contact stress for ¢ = 4.04 (proposed contact area : circle).

plate, from the center to the border of the contact area, the contact stress along any direction
rises in magnitude earlier than for the circular plate. Thus, near the center of the contact
area, the domain of the region free of contact stress in the square plate is smaller than in
the circular plate for this case. In addition, from the center of the contact boundary, the

y
X
3 -
r
- N\
1 r N/ 7
& AR B,
: O""___‘/—“’——-?— \
© — T I
1 T
o vy X /\.
(3] bk \ ’\
- /\/
\ ,\/
) ‘s
" | | | L
0 0.2 0.4 0.6 0.8 1.0
y
X 0 - 0.072
— — 0.215 -— — 0.356
- — — 0491 ---- 0.618

Fig. 10. Contact stress for ¢ = 4.0k (hypotrocoid, C, = 0.02).
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Fig. 11. Contact stress for ¢ = 4.0h (hypotrocoid, C, = 0.04).
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2
_3 1 [ 1 1 ]
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Fig. 12. Contact stress for ¢ = 4.0 (hypotrocoid, C, = 0.06).
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~ ~ == Keerand
Miller (1983)

Present study

0.8

/P
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0.4
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Fig. 13. Contact stress for ¢ = 4.0k (hypotrocoid, C, = 0.075).

contact stress distributions along different directions reach their peak values at different
locations with different magnitudes all of which are different from the circular plate result.
For 8 = 0°, for example, the peak contact stress can be 30% higher than the circular plate
result but the locations are nearly the same. Thus, the contact stress in the through-the-mid-
span direction of the square plate is distributed wider than in the circular plate. In the 15°
direction, the contact length is slightly decreased but the peak value of the contact stress
can still be greater than that of the circular plate by 15% and the location is shifted toward
the center of indentation. From the 15°- to the 30°-directions, both the maximum contact
stress and the contact length are reduced by about the same amounts as those from the 0°-
to the 15°-directions. Along both the 30°- and 45°-directions, the contact stresses are
distributed over a similarly narrower width and their peak values are found to be smaller
than in the circular plate.

Finally, the relation between the total contact load and the indentor displacement is
established and shown in Fig. 14. Keer and Miller’s solution (1983a) is also included for
comparison and their normalization scheme is employed. Clearly, the difference between
the two solutions is visible for most of the magnitudes of indentation but is negligible for
relatively small indentations. That the curve for the square plate is iocated above the curve
for the circular plate indicates that, in order to have the same amount of indentation, the
required load for a square plate must be greater than for a circular plate. Accordingly, a
square plate is stiffer than a circular plate in indentation.

CONCLUSIONS

Three-dimensional contact problems of isotropic square plates indented by a rigid
spherical indentor were solved by combining an analytical elasticity approach with a
numerical procedure. The approach employed the exact solution technique developed by

15 —

- =~ — — Keer and
Miller (1983)

—=——e—= Present study

10

5
o i
5 -7
] 1 ] ]
0 10 20 30 40
AR/(h"h)

Fig. 14. Load vs indentor displacement.
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Pagano (1970) in conjunction with the Point Matching (PM) method of Sun and Sankar
(1983) and enhanced by the Redundant Field Point (RFP) method presented by Singh and
Paul (1974) to overcome the inherent numerical sensitivity due to the ill-posed nature of
the problem.

For small indentations, the results indicated a Hertzian type behavior and were identical
to the circular plate solutions obtained by Keer and Miller (1983a). However, a compara-
tively limited range of applicability of Hertzian type solutions were revealed with respect
to the limit of the validity of a circular contact area. For comparatively large indentations,
the determination of the contact area was based on the consideration of the geometry of
the structure and was found to be a hypotrocoid of four lobes. In summary, the proposed
boundary geometry caused a reduction of the contact length along the through-the-corner
direction as the indentation proceeded. In this direction, the peak contact stress was less in
magnitude than for the circular plate solution. However, in the through-the-mid-span
directions, the magnitude of peak contact stress was appreciably greater than that of the
circular plate. The load versus indentor displacement relation indicated that a square plate
is stiffer in indentation than a circular plate with a diameter which is equal to the edge
length of the square plate.

Acknowledgement—The authors would like to express their sincere appreciation to Professor C. W. Smith for his
valuable technical suggestion during the course of this study.
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APPENDIX: EXPRESSIONS FOR THE T,,s IN EQN (11)

Fork+!# K+1,

16
T = WCOS (PXiy 1) COS(qyiy1)- (A1)
Fork=1,1=K,
| 1. N , [} ,
T, = - sin (px?) sin (gyk) + —5—3fcos (¢,) —cos (px3)] |, (A2)
q P p —1t
where
, Yrk+1— Yk
t =gmxy, t=gqm,, my=————.
X3
Fork=K, /=1,
Jm|1 . s , t ,
T = = sin (pxy) sin (qy2) + —5 —lcos (1) —cos (gy)] | (A3)
P L9 q9°—0
where
’ Xg+1— Xk
Ly =pmy; L=pm, mMm=—7 _"".
Y2
Fork+/=K+1;k=23,...,K—1;
1 §F5(k)_mlFC(k)
Tom = Jum| — f st == | (Ad)
[qu‘k"‘” O —(mg)? }

where

Fs(k) = [,fs(k+lvk+ -k TSk K+ Z-k)]’ FC(k) = [.fr(K+ 1,K+|—k)“’fc(k,K+ sz)],

. ) , , , 16( — l)n+m
Sewny = sin (px}) sin gy, fowny = cos (pxi)cos (qyD), Jum = Iz

In the above

nn mn L L .
p=f’ qu’ x,-=x,-—§, y,-=y,--5 and i=1,2,...,K+1.



